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The Ising model
Claudio Alves Pessoa Junior

Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: The Lenz-Ising model serves as a foun-
dational framework for studying phase transitions
in statistical mechanics. This work explores the an-
alytical solution for a 2D square lattice, focusing
on critical temperature and thermodynamic prop-
erties such as energy, magnetization, heat capacity,
and susceptibility. Using Monte-Carlo simulations
and the Metropolis algorithm, we numerically vali-
date Onsager's exact results, demonstrating a criti-
cal exponent γ = (1.737 ± 0.014), closely matching
the theoretical value of 7/4. The study highlights
the model's utility in computational physics and its
role in verifying numerical methods for complex sys-
tems.

1.1 A brief history

In 1924, Ernst Ising solved the one-dimensional
case of this model in his thesis [1] following a sugges-
tion from his advisor, Wilhelm Lenz. Now known
as the Lenz-Ising Model (or simply Ising Model), it
has proven to be a powerful mathematical frame-
work for describing interactions between discrete
variables, such as spin-spin interactions. The model
employs statistical physics to derive useful proper-
ties of lattices composed of magnetic dipole mo-
ments (or atomic spins). In his thesis, Ising studied
the dynamics of phase transitions in a 1D lattice,
ultimately discovering the absence of a phase tran-
sition. This �nding led him to pursue a career in
teaching at a university, setting aside further re-
search until after World War II.

�When Hitler came to power in 1933 I was dis-
missed from public schools, and for four years I was
the head of a private Jewish school near Potsdam.
I left Germany in 1939, but was not able to come
to the U.S.A. immediately. Only after I had come
to this country USA in 1947 did I learn that the
idea had been expanded. I have tried to extend

my model to more complicated forms, but have not
published anything yet.�, Ising wrote [2].

In 1947, Lars Onsager analytically solved the
two-dimensional square-lattice case [3], one of the
simplest nontrivial systems in statistical mechanics
where phase transitions can be observed�a topic
we will explore in this proceeding [4]. Notably, mi-
croscopic short-range interactions in this model can
produce phase transitions that di�er fundamentally
in character from classical van der Waals (or Curie-
Weiss/mean-�eld) transitions.

1.2 Theoretical description

Since no phase transition occurs in one dimen-
sion, we will explore the fundamentals of the sim-
plest case where phase transitions are possible: a
two-dimensional square spin lattice. First, we con-
sider that each particle can be in one of two states:
spin up (+1) or spin down (−1). The spin of the k-
th particle is indicated by σk ∈ {−1,+1}, where
k ∈ {1, . . . , Ld}, with L being the linear size of
the lattice (number of particles along each dimen-
sion) and d = 2 the spatial dimension. The spin
con�guration of the entire lattice is represented by
σ = (σ1, . . . , σk, . . . , σL2). There are 2N possible
spin con�gurations σ, where N = L2 is the total
number of particles. A visualization of this lattice
is shown in Figure 1.1.

This model assumes that the energy includes in-
teraction terms between neighboring spins. When
an external magnetic �eld is present, the system has
no analytical solution in general. The Hamiltonian
describing the energy is given by

E(σ) = −Jij
N∑
〈ij〉

σiσj −B
N∑
i

σi, (1.1)

where Jij represents the coupling constant between
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Figure 1.1: Representation of a square lattice of
spins.

spins σi and σj , and B denotes the strength of the
external magnetic �eld. Spin-spin interactions can
be classi�ed into three types:

� Ferromagnetic (Jij > 0)

� Antiferromagnetic (Jij < 0)

� Non-interacting (Jij = 0).

To simplify our system, we assume uniform nearest-
neighbor interactions, setting Jij ≡ J for all adja-
cent spins. Furthermore, considering the case with-
out an external magnetic �eld (B = 0) and gener-
alizing to a two-dimensional lattice, we can express
the energy as

E(σ) = −J
L∑
i=1

L−1∑
j=1

σi,jσi,j+1 − J
L−1∑
i=1

L∑
j=1

σi,jσi+1,j .

(1.2)
We can now establish the general partition func-

tion within the grand canonical ensemble formalism
[5]

ZΛ(T ) ≡ ZΛ =
∑
σ∈Λ

e−βE(σ), (1.3)

where Λ represents the set of all possible spin con�g-
urations σ, and β = 1

kBT
is the inverse temperature

(with kB denoting the Boltzmann constant and T
the absolute temperature).

Substituting the expression of energy from Equa-
tion 1.2 into the partition function Equation 1.3,
and utilizing two key observations

� The identity (σijσlm)
2 ≡ 1 for spins σ ∈ {−1,+1}

� The hyperbolic trigonometric identity eβJσijσlm =
cosh(βJ) + σijσlm sinh(βJ)

we can develop a geometric interpretation of the
partition function in terms of polygon con�gura-
tions. The expansion of the product of all nearest-
neighbor terms in the partition function naturally
leads to a description where

� Each term in the expansion corresponds to a
collection of closed polygons (or "contours")
on the dual lattice

� These polygons represent domain boundaries
between regions of aligned spins

� The weight of each con�guration depends on
the total length of these boundaries

This polygon representation, illustrated in Fig-
ure 1.2, provides a powerful geometric framework
for analyzing the Ising model, where

ZΛ = (2 cosh2 βJ)N
∑

polygons

(tanhβJ)total perimeter

(1.4)
with N = L2 being the number of lattice sites.
The summation runs over all possible closed poly-
gon con�gurations on the lattice.

Figure 1.2: Example of polygons in a spin-state σ.
Here P4(σ) = 1, P6(σ) = 1, P8(σ) = 1, P16(σ) = 1
and Pn(σ) = 0 if n /∈ {4, 6, 8, 16}. It is possible to
see that all n are always even and n ∈ [4, 2(N −L)].

From Equation 1.4, we can work on
∑

polygons

in order to obtain the partition function for a �nite
lattice

ZΛ = (coshβJ)
2(N−L)

2N
∑
n≥0

Pn(σ) (tanhβJ)
n
,

(1.5)
where n is the perimeter length of a polygon and
Pn(σ) the number of closed polygons with perimeter
n for a given spin con�guration σ ∈ Λ, always de-
pending on the lattice topology and boundary con-
ditions.

In this work, we focus on key physical quantities
of the Ising system. Having established the energy
formulation, we now examine the magnetizationM ,
which quanti�es the net alignment of spins as mag-
netic dipoles. The total magnetization is de�ned as
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the sum over all spin states

M(σ) =

N∑
i=1

σi, (1.6)

where N = L2 is the total number of spins. This
quantity serves as an order parameter for the fer-
romagnetic phase transition. In the ordered phase
at low temperatures, the spins align preferentially,
which makes the magnetization scale |M | ∼ O(N).
In the disordered high-temperature phase, random
spin con�gurations cause the magnetization to �uc-
tuate around zero with typical values of orderO(

√
N),

while the expectation value 〈M〉 vanishes due to
symmetry. The temperature dependence of 〈|M |〉
reveals the spontaneous symmetry breaking at the
critical temperature Tc, where the system transi-
tions between these two regimes.

We now derive the material properties related to
energy and magnetization. Following standard sta-
tistical mechanics, the heat capacity CV and mag-
netic susceptibility χ are de�ned through the tem-
perature and �eld derivatives of the ensemble aver-
ages

CV =
∂〈E〉
∂T

, χ =
∂〈M〉
∂B

, (1.7)

these can be expressed more operationally in terms
of �uctuations as

CV =
〈E2〉 − 〈E〉2

kBT 2
,

χ =
〈M2〉 − 〈M〉2

kBT
,

(1.8)

where the angle brackets denote thermal averages.
Our analysis will utilize all four fundamental quanti-
ties: the energy Equation 1.2, magnetization Equa-
tion 1.6, and these material properties Equation 1.8,
which connect microscopic con�gurations to macro-
scopic observables. The heat capacity characterizes
energy �uctuations, while the susceptibility quan-
ti�es how the magnetization responds to external
�elds, both revealing critical behavior near phase
transitions.

1.2.1 Phase transitions

In general, phase transitions can be identi�ed by
examining the analytic properties of the system's
thermodynamic functions. However, for the Ising
model, it is more practical to detect these transi-
tions through macroscopic instabilities, particularly
through characteristic changes in the temperature
dependence of thermodynamic quantities. The crit-
ical temperature Tc emerges as a key parameter

where derivatives of macroscopic variables (such as
magnetization or speci�c heat) exhibit singular be-
havior, signaling the onset of long-range order.

Critical temperature

For anisotropic couplings where J is di�erent in
each direction (horizontal and vertical), JH 6= JV ,
we de�ne K = JH/(kBT ), L = JV /(kBT ) and ap-
ply the Kramers-Wannier duality [6]. The partition
function exhibits dual forms

Low T : ZN = 2eN(K̃+L̃)
∑
P̃

e−2(K̃h+L̃v)

High T : ZN = 2N (coshK coshL)N

×
∑
P

(tanhL)v(tanhK)h

where K̃, L̃ are dual couplings (tanh K̃ = e−2L),
P (P̃ ) are original (dual) polygons, and h, v count
horizontal/vertical bonds. This reveals the temper-
ature duality of the anisotropic model [7].

For a square lattice with isotropic couplings (JH =
JV ≡ J), the critical point occurs when K = K̃.
This yields the condition

sinh

(
2J

kBTC

)
= 1, (1.9)

which can be solved analytically using the identity
sinh−1(1) = ln(1 +

√
2). The exact critical temper-

ature is

kBTC
J

=
2

ln(1 +
√

2)
≈ 2.26918531421. (1.10)

This celebrated result matches Onsager's exact so-
lution for the 2D Ising model.

Critical exponents and thermodynamical vari-
ables

The existence of a critical temperature TC (Equa-
tion 1.10) allows us to characterize the phase tran-
sition through the magnetization M . This quantity
serves as an order parameter, clearly distinguishing
between

� The high-temperature paramagnetic phase (T >
TC), where spins are randomly oriented and
〈M〉 = 0;

� The low-temperature ferromagnetic phase (T <
TC), where spins align spontaneously and 〈M〉 6=
0.
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The transition manifests most dramatically in the
magnetic susceptibility χ, which diverges at T = TC
due to the onset of long-range order. This critical
behavior re�ects the system's sensitivity to in�nites-
imal perturbations near the phase transition.

Near the critical temperature TC , thermodynamic
quantities exhibit power-law behavior characterized
by critical exponents. The heat capacity and mag-
netic susceptibility scale as

CV (T → T−C ) ∼ |T − TC |−α

χ(T → T−C ) ∼ |T − TC |−γ ,
(1.11)

with known Onsager solution values α = 0 (loga-
rithmic divergence) and γ = 7/4 for the 2D Ising
model. The zero exponent α indicates a logarith-
mic rather than algebraic divergence in CV , while γ
governs the susceptibility's singular behavior.

As we de�ne a region where T ∼ TC , we must
introduce the correlation length. Near the critical
temperature, the correlation increases and spin in-
teractions become stronger, so the correlation length
re�ects both temperature and material properties

ξ ≈ (TC − T )−ν . (1.12)

In a second-order phase transition, the correlation
length diverges and spans the entire system. How-
ever, since we are limited by the lattice size L, we
consider

ξ ≈ L ≈ (TC − T )−ν (1.13)

relating this to the scaling of physical quantities, we
obtain

CV ≈ L−α/ν
χ ≈ L−γ/ν (1.14)

thus, values for α and γ can be extracted by ana-
lyzing these material properties.

To observe these e�ects, we perform numerical
simulations on lattices of di�erent sizes, as presented
below.

1.3 Numerical solution of a 2D

squared lattice

Now, based on the considerations of our ana-
lytical 2D square lattice and using C++, we can
develop a numerical solution. There are several
methods to address this problem [8]; here, we will
use a Monte Carlo simulation combined with the
Metropolis algorithm.

1.3.1 Monte-Carlo simulation

This technique was developed by mathematicians
and �rst applied in physics during nuclear weapons
research [9]. The idea is based on a statistical prin-
ciple that can be illustrated with a simple example

(i) consider a circle inscribed in a square;

(ii) we know that the ratio of the area of the circle
to the area of the square is π/4;

(iii) if we randomly choose a point within the square,
there is a probability of π/4 that the point also
lies inside the circle;

(iv) by generating a large number of random points
inside the square and counting how many fall
within the circle, we can estimate this proba-
bility.

The more points we generate, the closer the esti-
mated value gets to the actual value of π/4.

1.3.2 Metropolis algorithm

The Metropolis algorithm is a statistical method
based on Monte Carlo sampling. It was developed
by Metropolis [10], later generalized by Hastings [11],
and widely applied in physics. The central idea is to
evaluate the �variation� of the partition function by
considering the energy di�erence between two states
that di�er by a single spin �ip.

We calculate ∆E. If ∆E ≤ 0, the spin �ip is
accepted. Otherwise, we compute z = e−β∆E and
generate a random number r ∈ [0, 1]. If r ≤ z, the
new spin con�guration is accepted; if not, we reject
the change and return to the previous state before
proceeding to the next step.

1.3.3 Results

As previously said, the 2D Lenz-Ising model is a
great way to check the correctness of a complicated
simulation. In order to do a didatic help, in here we
present this test. All simulations shown here was
inspired by HJORTH-JENSEN [12].

We initialize a 2D lattice with all spins up and
evolve it using a Monte Carlo simulation to evaluate
the �nal distribution of spins through the mean val-
ues of E, M , CV , and χ. This evolution is carried
out using the Metropolis algorithm, where only a
single spin is �ipped at each step. Simulations were
performed for 12 lattice sizes, with L ∈ {10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}.

Calculating sums such as E and M directly is
computationally expensive and ine�cient for nu-
merical simulations. One way to improve e�ciency
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is to compute the energy di�erence ∆E resulting
from a single spin �ip (up to down or down to up),
and use the Metropolis algorithm to decide whether
to accept the change. If the change is accepted,
∆E is added to the initial energy, which is given by
Eini = −2N . Magnetization is updated similarly,
starting from Mini = N .

With the energy and magnetization computed,
the quantities in Equation 1.8 can be evaluated.
The results for these four variables are shown in
Figure 1.3, Figure 1.4, Figure 1.5, and Figure 1.6.
Note: All simulations were performed using kB =
J = 1 to reduce computational complexity and pro-
cessing time.

Figure 1.3: Mean energy per particle for di�erent
lattices.

Figure 1.4: Mean heat capacity per particle for dif-
ferent lattices.

Figure 1.5: Mean magnetization per particle for dif-
ferent lattices.

Figure 1.6: Mean magnetic susceptibility per parti-
cle for di�erent lattices.

Using 106 Monte Carlo steps per lattice size L,

we locate T
(N)
C at the peak of 〈χ〉. The �nite-size

scaling behavior follows∣∣∣∣∣T (N)
C − TC
TC

∣∣∣∣∣ = L−1/ν , (1.15)

where TC is the exact value from Equation 1.10.
The maximum susceptibility scales as

χmax ∼ L−γ/ν . (1.16)

For the 2D Ising model (ν = 1, γ = 7/4), this allows
direct comparison between our simulated γ and the
exact value.

From log-log �ts of Equation 1.15 and Equa-
tion 1.16 in Figure 1.7, we extract slopes−1/ν (tem-
perature scaling) and −γ/ν (susceptibility). Our re-
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sult γ = (1.737± 0.014) matches the exact 2D Ising
value γexact = 7/4 ≈ 1.75.

Figure 1.7: Fitting of our simulation, resulting in
an error with respect of γreal of −0.7%.

1.4 Conclusion

The 2D Ising model continues to play a vital role
in statistical physics, serving as both a fundamental
benchmark for numerical methods and a prototype
for studying complex systems. In this work, we have
presented the complete analytical solution for the
square lattice case while simultaneously verifying it
through numerical simulations using �nite-size scal-
ing techniques.

Our numerical results yield the critical expo-
nent γ = (1.737±0.014), showing remarkable agree-
ment with the theoretical value γexact = 7/4 ≈ 1.75
within just 0.7% error. This precision demonstrates
how well-designed simulations can e�ectively ap-
proximate thermodynamic limits despite �nite-size
constraints.

The methodology developed here establishes a
solid foundation for investigating more complex spin
systems that lack analytical solutions, particularly
models with anisotropic interactions, frustrated ge-
ometries, or disordered couplings. These extensions
are particularly valuable in cases where numerical
approaches become the primary tool for understand-
ing emergent phenomena in many-body systems.
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Wigner crystals: On the theoretical
prediction and �rst imaging
Louis Adrian Böhm

Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: More than 90 years ago, physicist Eu-
gene Wigner predicted that electrons can form a
crystal structure when their kinetic energy is lower
than the potential energy of their Coulomb interac-
tions [1, 2]. This exotic phase of matter, formed by
electrons, is called the Wigner crystal. In 2024, sci-
entists achieved a major breakthrough by imaging
a two-dimensional Wigner crystal for the �rst time,
con�rming their theoretical predictions [3]. This
highlights that Wigner crystals still remain an ac-
tive research area and many questions are also still
not answered [2]. While this work does not present
a new theoretical or experimental result, it instead
provides an overview of Wigner crystals, speci�cally
in the context of the course "Chemical Physics and
Thermodynamics of Gases and Solids" [4].

2.1 Introduction

In 1934, Eugene Wigner analyzed the properties
of free electrons in a metal and predicted that under
certain conditions electrons can form solid struc-
tures, called Wigner crystals [1]. Achieving this
state requires the potential energy of the Coulomb
interactions between the electrons to be larger than
their kinetic energy. When this condition is met,
the electrons will localize in a lattice structure to
minimize their energy [1]. Such a state is expected
to occur at very low electron densities which makes
it di�cult to realize in practice [2]. In 1979, Charles
Grimes and Gregory Adams observed the resonance
expected from a Wigner crystal in an electron sys-
tem for the �rst time, indicating that Wigner crys-
tals are indeed a real phenomenon [5]. To achieve
this, they studied electrons on the surface of charged
liquid Helium which naturally has a very low elec-
tron density [5]. However, the direct imaging still

remained an outstanding challenge for many more
years [2]. It was only later discovered that a Wigner
crystals can be achieved more easily by applying a
strong magnetic �elds [2]. This is due to the fact
that the magnetic �eld forces electrons into discrete
energy levels, called Landau levels, and thereby re-
duces their kinetic energy [6, 3]. Following, their
potential energy can then dominate, even at higher
electron densities making it much easier to achieve
Wigner crystallization. Many works used this tech-
nique to indirectly observe Wigner crystals and test
their properties [2]. However, a direct observation
of the Wigner crystal was only achieved in 2024 by
a team of researchers led by Y. Tsui and colleagues.
So almost 90 years after Wigner's initial prediction,
the �rst direct imaging of a two-dimensional Wigner
crystal con�rmed his theory [3]. Since Wigner crys-
tals combine aspects of condensed matter physics
and quantum mechanics their study is particularly
interesting. For example in condensed matter physics
scientist expect that further studies will explain cer-
tain anomalies found in speci�c materials, like the
anomalous transport of HgCdTe structures [7]. Fur-
ther, in the �eld of quantum mechanics it is ex-
pected that studying Wigner crystals will help to
understand the quantum Hall e�ect and quantum
phase transition [2].

The following report will start with an introduc-
tion to the theoretical framework needed to under-
stand Wigner crystallization. Next the conditions
under which Wigner crystals are expected to form
are discussed in three separate parts. In the �rst
part it is laid out how Eugene Wigner �rst predicted
electron crystallization. This is followed by a discus-
sion of the phase boundary between the �uid and
solid phase of electrons. Finally, in the third part
of this section a computational method is presented
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that can predict precise conditions for Wigner crys-
tallization. Based on this theoretical overview the
next part of the report discusses how the �rst di-
rect imaging of a Wigner crystal was achieved. The
report is then �nalized with a conclusion of the pre-
sented topics.

2.2 Theoretical framework

2.2.1 Jellium model

The model that is often used to describe Wigner
crystallization is the Jellium model [8]. It aims
to simplify the complex electronic interactions in a
metal by assuming that the valence electrons move
through a uniform charge background called "Jel-
lium". This background �eld is constructed by av-
eraging the electric charge of all nuclei and core elec-
trons while disregarding their individual positions.
With this the Jellium ensures that the system of
electrons is always neutral, since the positive back-
ground charge cancels out the negative charges of
the electrons [8]. The Jellium model is useful for
cases where valence electrons are de-localized and
do not participate in chemical bonding. Such is the
case for speci�c metals like Na, K, and Cs [8]. One
important parameter in the Jellium model is the
Wigner-Seitz radius rs, which describes the aver-
age distance between a pair of electrons in a three
dimensional system [8]. It can be derived by con-
sidering a sphere of radius R with N uniformly dis-
tributed valence electrons within it. This sphere can
then be divided into N smaller spheres, each con-
taining one electron [8]. The volume of each of these
smaller spheres can then be expressed as:

V (rs) =
V (R)

N
=

1

n
(2.1)

Where n = N/V (R) is the average valence electron
density. To derive the Wigner-Seitz radius rs the
dimensionality of the system needs to considered
when calculating V (rs). For the three-dimensional
system it is derived as follows [8].

V (rs) =
4

3
πr3
s =

1

n
⇒ rs =

(
3

4πn

)1/3

(2.2)

Following this, one can easily show that for a two-
dimensional system it is [7]:

rs =
1√
πn

(2.3)

For the rest of the report rs will be de�ned dimen-
sionless and in terms of the Bohr radius aB . For the

two-dimensional system it is then given as [7]:

rs =
1√
πn
· 1

aB
=

1

aB
√
πn

(2.4)

2.2.2 Landau levels

By introducing a strong magnetic �eld into the
system of electrons a Wigner crystal can be formed
more easily [2]. This is due to the fact that the mag-
netic �eld forces the electrons into discrete energy
levels, called Landau levels [6]. The following will
give a brief overview of the Landau levels and how
they are derived.

To adjust the derivation to the problems at hand
the Landau Levels are derived for an electron that
is con�ned to the x-y-plane, with electric charge e,
which is the elemental charge. A static electromag-
netic �eld B = Bez with unit vector ez pointing in
z-direction, is introduced. The Schrödinger equa-
tion can then be written as [6]:

− ~2

2m

(
ex

∂

∂x
+ ey

∂

∂y
+ i

e

~
Â

)2

ψ = Eψ (2.5)

Where E is the energy of the system, m is the mass
of the electron, ~ is the reduced Planck constant
and ex, ey are unit vectors in the x and y direc-

tion, respectively. The parameter Â is the vector
potential, which for a uniform magnetic �eld in the
z-direction, can be written as Â = Bxey [6]. When
separating the wavefunction ψ(x, y) into its x and
y components ψ(x, y) = φ(x)φ(y), it can be written
for the eigenstate ky, as [6]:

ψ(x, y) = eikyyφky (x) (2.6)

Using this generalized wavefunction the Hamilto-
nian of the system can be written as [6]:

~2

2m

∂2

∂x2
φky (x) +

1

2
mω2

c (x− x0)2φky (x) = Eφky (x)

(2.7)
The full derivation of this equation is given in Ap-
pendix 2.6. This equation can be recognized as the
equation of a harmonic oscillator, where the electron

oscillates with the cyclotron frequency ωc = |eB|
m

around the center x0 = −~ky
eB [6]. Therefore, the

energy of the system can be written as [6]:

En = ~ωc
(
n+

1

2

)
(2.8)

In conclusion this shows that electrons in a magnetic
�eld are forced into discrete energy levels, called
Landau levels. This reduces their spacial degree of
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freedom since they are forced to oscillate in an area

given by the Landau radius rL =
√

~
|eB| [6]. Follow-

ing this equation, the stronger the magnetic �eld is
the smaller this area gets, meaning the electrons get
more localized. Introducing a strong magnetic �eld
helps in the formation of the Wigner crystal, since
then the Coulomb interactions and the Landau Lev-
els both force the electrons to localize [3].

2.3 Conditions for Wigner crys-

tallization

2.3.1 Energy Considerations

The key idea of Wigner crystallization is, that
when the kinetic energy in an electron gas is lower
than the potential energy the electrons will become
localized in a lattice structure [1]. To evaluate if
this is possible the energies of the two-dimensional
electron system will be calculated.

The potential energy of the system is derived
by the interaction of two electrons at a distance r
via a Coulomb potential energy given by UC(r) =
e2

4πεr [7]. Here ε is the permittivity of the medium.
Expressing this potential in terms of the Wigner-
Seitz radius rs, it can be written as:

UC(rs) =
e2

4πεrsaB
(2.9)

The potential energy is therefore proportional to
1/rs.

To then calculate the kinetic energy Ekin of the
electrons, they are treated as an ideal Fermi gas.
The kinetic energy is given by the Fermi energy EF
(Section 4.4 [4]):

Ekin = EF =
~2k2

F

2me
(2.10)

Where me is the electron mass and kF is the Fermi
wave vector. The latter can be expressed in terms
of the electron density n as kF =

√
2πn for the

two-dimensional system [7]. The electron density n
can then be expressed in terms of the Wigner-Seitz
radius rs as n = 1

πr2sa
2
B
. Next, the Fermi wave vector

is written as a function of the Wigner-Seitz radius

kF =
√

2
rsaB

. Substituting this into the equation for
the kinetic energy, one gets:

Ekin =
~2

mer2
sa

2
B

(2.11)

Summarizing, this means that the potential energy
scales as 1/rs and the kinetic energy as 1/r2

s [1].

In a system with large enough rs, the potential en-
ergy can therefore dominate the kinetic energy [7].
This system therefore needs to have a low electron
density, for the Wigner crystallization to occur [2].

2.3.2 Phase boundary

Next the phase transition from an electron liquid
to a Wigner crystal will be discussed. The discus-
sion is based on the letter [9] which gives a ther-
modynamic perspective on this transition. The au-
thors assume a system with constant pressure and
temperature. In this isobaric-isothermal system the
Gibbs free energy G of the system stays the same
(see Section 1.2.3.5 [4]) [9]:

Gfluid = Gcrystal (2.12)

The Gibbs energy is de�ned as G = E + PV −
TS [4], where E is the internal energy, V is the
volume and S is the entropy. From this the following
relationship can be derived [9]:

∆G = ∆E + P∆V − T∆S = 0 (2.13)

⇒ ∆E = T∆S − p∆V (2.14)

For a system where all interactions are due to the
coulomb potential, the relationship between the po-
tential and kinetic energy is given by the Coulombic
virial theorem [10]. It can be written as [10, 9]:

2Ekin + U = 3PV (2.15)

Where Ekin is the kinetic energy and U is the po-
tential energy of the system. For the phase change
this is then written as [9]:

2∆Ekin + ∆U = 3P∆V (2.16)

⇒ P∆V =
2

3
∆Ekin +

1

3
∆U (2.17)

Since the internal energy E is the sum of the kinetic
and potential energy, its change during the phase
transition can be expressed as ∆E = ∆Ekin + ∆U .
Combining this with the previous equations, the fol-
lowing can be derived [9]:

T∆S + ∆E =
2

3
∆Ekin +

1

3
∆U (2.18)

⇒ T∆S =
5

3
∆Ekin +

4

3
∆U (2.19)

For a constant temperature T and pressure P the
kinetic energy of the system stays constant during
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the phase transition. If T > 0 the change of entropy
∆S can be expressed as [9]:

∆S =
4

3

∆U

T
(2.20)

And for the change of the Volume one gets [9]:

∆V =
1

3

∆U

P
(2.21)

With these results and the Clausius-Clapeyron equa-
tion (Section 2.1.2 [4]) the following can be derived
[9]:

dP

dT
=

∆S

∆V
=

12

3

P

T
= 4

P

T
(2.22)

This equation is then integrated [9]:

⇒ dP = 4
P

T
dT (2.23)

⇒ dP

P
= 4

dT

T
(2.24)

⇒ ln(P ) = 4 ln(T ) + const. (2.25)

⇒ P = CT 4 (2.26)

Where C is a constant that depends on the sys-
tem. In summary, this means that for an isobaric-
isotherm electron system the pressure must be pro-
portional to the fourth power of the temperature
P ∝ T 4. Reaching the boundary therefore strongly
depends on the temperature. This indicates that
the Wigner crystallization is best achieved at a low
temperature where the in�uence of the fourth power
of the temperature is minimized.

2.3.3 Computational evaluation

To determine more precise conditions for Wigner
crystallization, a computational evaluation of the
problem is necessary. In the work [11] the authors
use a computational method to determine theWigner-
Seitz radius rs at which Wigner crystallization is
expected to occur. They �rst set up the Hamilto-
nian as a function of the Wigner-Seitz radius rs for
a 2D system of N electrons [11]. In this work the
authors calculate everything in the units of Rydbers

per electron given as 1Ry = me4

2~2 [11]. The Hamil-
tonian is then given as [11]:

Ĥ =
1

r2
s

N∑
0<i

∇2
i +

2

rs

N∑
0<i<j

1

|r̂i − r̂j |
+ const. (2.27)

Here r̂i is the position operator of the i-th electron
and ∇2

i is the Laplacian operator acting on the i-th
electron. The �rst term describes the kinetic energy
of the system, and the second term describes the po-
tential energy of the system due to the Coulomb in-
teraction. The constant term represents the contri-
bution of the neutralizing background which arises
from the Jellium model [11]. The authors then use
the variational Monte Carlo (VMC) and the �xed-
node Green's function Monte Carlos method (FN-
GFMC) to �nd the ground state of the system under
di�erent conditions. Due to the brevity of this re-
port, only the less complex VMC method will be
discussed here.

The VMC method is a stochastic method that
uses random sampling to �nd the expected value of
a function. Let R be one possible con�guration of
positions for all N electrons in the system. A trial
wave function ΨT (R) is chosen, which is assumed
to have the correct symmetry. Con�gurations R are
then sampled from the probability density function

|ΨT (R)|2∫
|ΨT (R)|2dR

(2.28)

The sampling is performed with the Metropolis al-
gorithm, which strategically generates a set of ran-
dom positions for the electrons in the system [12].
Next the energy for all sampled con�gurations is
calculated using the Hamiltonian Ĥ of the system.
It can be shown that the expectation value from
all these energies is an upper bound of the exact
ground state energy of the system [11]. The choice
of the trail wave function determines which system
is described. This way the authors could model the
electron system for the gas, liquid and for the crys-
talline phase [11]. Further, the temperature T of
the system is set to T = 0 so that the crystal can be
modeled as free of any defects [11]. Figure 2.1 shows
the predicted dependency on rs for the ground state
energies of each phase. The graphs are obtained by
�tting them to the VMC results, which can also be
seen in the �gure. For rs > 37 the energy of the
crystal phase is the lowest and therefore the system
is predicted to crystallize to minimize its energy.
The authors give a critical value of rs ≈ 37 ± 5 for
the Wigner crystallization. Such a high Wigner-
Seitz radius is experimentally di�cult to achieve,
especially considering the fact that the calculation
assumes a nonphysical temperature of T = 0 [11, 7].
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Figure 2.1: The predicted ground state energies of
an electron system for di�erent phases as a func-
tion of the Wigner-Seitz radius rs. The electron gas
phase is represented by the dashed line, the liquid
phase by the dotted and the crystal phase by the
solid line. All lines are �tted to the data points
given by the MC method: Circles for the crystal,
stars for the liquid and plus signs for the gas phase.

2.4 Experimental observations

While an indirect observation of Wigner crys-
tallization has already been done in the past, the
�rst direct imaging of a 2D Wigner crystal was only
achieved in 2024, published in paper [3]. The au-
thors use a bilayer graphene sample which forms
a 2D electron gas on the surface. The high value
for the Wigner-Seitz Radius, which was discussed
in the section above would make it hard to achieve
Wigner crystallization in such a system. But by
applying a strong variable magnetic �eld, the nec-
essary Wigner-Seitz radius rs of the system can be
tuned [3]. This is due to the Landau levels, which
were discussed in section 2.2.2. To image the re-
sulting Wigner crystal the authors used a scanning
tunneling microscope (STM) [3].

An STM is a powerful device that can resolve
very small scales [3]. This is achieved by moving a
sharp conductive tip over the surface of a sample.
A voltage is applied between the tip and a sample,
which allows electrons to tunnel through the vac-
uum between them. At a constant bias voltage VB
this tunneling current I depends only on the dis-
tance between the tip and the sample. The tip is
moved over the whole surface and by measuring this
tunneling current, a topographic image of the sur-
face can be created [3]. What makes the imaging
approach used in paper [3] novel is that the authors
used an ultra-clean bilayer graphene sample to place

Figure 2.2: Spacial variation of the tunneling cur-
rent modulation δIdc imaged with an STM. The pat-
tern shows the hexagonal lattice structure of the
Wigner crystal. The shown region has a size of
200 × 200 nm². The scale bar in the bottom right
corner corresponds to 50 nm [3].

the Wigner crystal on. This reduces the in�uence of
impurities and defects. The results of the imaging
are shown in �gure 2.2. In speci�c, one can see the
spatial variation of the tunneling current modula-
tion δIdc, which is the di�erence between the tun-
neling current at a speci�c position and the average
tunneling current over the whole surface [3]. While
not discussed in this report, the 2D Wigner crystal
is expected to show a hexagonal lattice structure [3].
This hexagonal structure is clearly visible in the re-
sults of the STM imaging. They further showed
that the perturbation of the tunneling current did
not destroy the Wigner crystal, which shows that
the structure is stable against such disturbances.
The results de�nitively con�rm the existence of a
Wigner crystals and thereby Wigner's theory [3].

2.5 Conclusion

In conclusion, this report has discussed the his-
tory, the theoretical framework and the �rst direct
imaging of a Wigner crystal. It took 90 years to
develop the theoretical and experimental advance-
ments necessary, to achieve this milestone [1, 2].
The report outlines a few of these advancements,
like the introduction of the Jellium model, the Lan-
dau levels and the computational evaluation of the
Wigner-Seitz radius rs. While this report aims to
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give an overview of Wigner crystallization, it is by
no means exhaustive. The report should rather in-
spire the reader to further investigate the topic. Es-
pecially since many questions are still unanswered,
and more theoretical and experimental work will be
necessary to fully understand Wigner crystals.
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2.6 Appendix

Derivation of the Landau Level Schrödinger Eq.:

Starting from the Schrödinger Equation 2.5, and
using the de�ned Â and generalized eigenfunction:

− ~2

2m

(
ex

∂

∂x
+ ey

∂

∂y
+ i

e

~
Bxey

)2

eikyyφky (x)

= Eeikyyφky (x)

Terms in x and y direction have no cross-term:

− ~2

2m

(
∂2

∂x2
+

(
∂

∂y
+ i

e

~
Bxey

)2
)
eikyyφky (x)

Expand second term:

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
−
(
eB

~

)2

+
2ieBx

~
∂

∂y

)
eikyyφky (x)

The exponential term of the Eigenfuncion can now
be solved:

− ~2

2m

(
∂2

∂x2
− k2

y −
(
eB

~

)2

− 2kyeBx

~

)
eikyyφky (x)

Applying the binomical formula:(
− ~2

2m

∂2

∂x2
+

e2

2m
B2

(
x+

~ky
eB

)2
)
eikyyφky (x)

With the de�nition for ωc and x0 from the main
text, the �nal equation is obtained.
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Abstract: Mechanochemistry is a promising method
for synthesizing advanced materials like co-crystals,
which o�er the ability to precisely tune critical prop-
erties such as drug solubility, stability, and bioavail-
ability. However, the �eld lacks predictive mod-
els that connect machine settings to reaction out-
comes, which makes optimizing experiments di�-
cult and often reliant on trial-and-error. This pa-
per aims to solve this by developing a quantita-
tive model based on Hertzian contact theory and
Bell's model for reaction kinetics. A direct rela-
tionship between milling frequency (fmill) and the
resulting contact stress (σ) is derived, showing that

stress scales with f
2/3
mill. The model's most impor-

tant prediction is a testable hypothesis linking the
minimum frequency needed for a reaction (fmill, min)
to its activation energy (Eact) with the proportion-

ality fmill, min ∝ E
3/2
act . This provides a path for

rationally designing mechanochemical experiments
and even selecting for speci�c products based on
their activation energies. While experimental vali-
dation is still required, this framework o�ers a sig-
ni�cant step towards a more predictive understand-
ing of mechanochemistry.

3.1 Introduction

3.1.1 Co-crystals

Co-crystals are de�ned by the IUCr[1] as

Solid consisting of a crystalline single-
phase material composed of two or more
di�erent molecular and/or ionic compounds
generally in a stoichiometric ratio which
are neither solvates nor simple salts.

As such, co-crystals are a class of material that can

have a lot of interesting properties for providing a
way of changing phasis transition properties with-
out directly changing chemical structure of the given
coformers (de�ned as those molecualar and/or ionic
compounds).

Those properties are interesting in the context
of biological systems because it is possible to change
speed of dissolution, permeability (with supramolec-
ular synthons, that are beyond the scope of this
work), and shelf life (if they exist they tend to min-
imize ∆G).

3.2 Methods

3.2.1 Mechanochemistry

In the search of novel better pathways to chemestry,
one of the oldest known synthesys method[2] has
shown incredible potential. Mechanochemestry con-
sists on methods that apply physical force to mate-
rials instead of heat as a way to promote chemical
reactions. There are various ways to do so, rang-
ing from hand-grinding (not very reproducible) to
automatic ball mills.

Figure 3.1: Example of equipment used for
mechanochemestry, PULVERISETTE 23, obtained
from the vendor website
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In �gure 3.1 it is possible to see an example of a
ball mill that is used for mechanochemestry.

3.2.2 Current methods

Some methods are present in the literature to
determine activation energies in mechanochemical
reactions[2][5], but there is �rstly, a lack of infor-
mation on co-crystalization activation energies, only
present on Fischer, et all [2] paper. Not only that,
but crytical information explaining the correlations
between frequency, ball material, equipment geom-
etry, etc is severely missing in the literature. This
work also aims to partially solve this problem. One
of the works of H. Hergesel [3], demonstrated a sig-
ni�cant similarity to some of the proportionality re-
sults using the Zhurkov equations. This work im-
proves on it with also showing that it potentially
works for crystals. The focus of that work was also
on obtaining monomers, so the aims of the works
are di�erent.

3.2.3 Bell's model

Mechanichemical kinetics can be described by
the Bell's model[6]. In this model, the rate constant
without an external force is given by

k0 = A exp

(
− Eact

KBT

)
(3.1)

Where, Eact is de�ned as the energy encessary to
overcome the activation barrier that traps the sys-
tem in a local energy minima. The reaction rate can
therefore be written as

k(F ) = k0 exp

(
F∆x‡

kBT

)
(3.2)

F is de�ned as a force that modi�es the potential
by a given activation lenght (∆x‡). This in a more
usefull format can be written as

k(σ) = k0 exp

(
σ∆V ‡

kBT

)
(3.3)

beign σ de�ned as the contact stress, or pressure,
and the activation volume (∆V ‡), that is the acti-
vation lenght multiplied by the area of stress.

Figure 3.2: Schematic representation of the energy
landscape of the reaction. Each curve represents a
higher contribution to lowering the activation en-
ergy from an external force.

3.3 Results and discussion

3.3.1 Hertzian contact stress

The local stress (σ) during a collision between a
milling ball and a crystal particle can be modeled
with Hertzian contact theory[3], where an impact
force (Fimpact) is distributed over a small impact
radius (Rimpact).

σ =
3Fimpact

2πR2
impact

(3.4)

The impact force depends on the ball's mass (m)
and its maximum acceleration (amax), while the con-
tact area is a function of the ball's radius (r) and
the depth of indentation (d).

Fimpact = mamax (3.5)

Rimpact = (rd)
1
2 (3.6)

From the standard Hertzian force-displacement re-
lationship, where E∗ is the reduced Young's modu-
lus, we have:

Fimpact =
4

3
E∗r

1
2 d

3
2 (3.7)

Solving for the indentation depth, d, gives:

d =

(
3

4

Fimpact

E∗r
1
2

) 2
3

(3.8)

Now, it is possible to substitute the expressions for
d and Fimpact back into the primary equation for
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stress.

σ = 2
E∗r1/2d3/2

πrd
(3.9)

=
2

π
E∗r−1/2

(
3

4
r−1/2 1

E∗
Fimpact

)1/3

(3.10)

=

(
6

π3

E∗2

r2
Fimpact

)1/3

(3.11)

Figure 3.3: Example of ball mill that vibrates in
an harmonic like pattern with a constant ωmill =
2πfmill.

In this model, a sinosoidal movement is assumed
in �g. ??

x(t) = xmax · sin(2πfmillt) (3.12)

ẍmax = −xmax · (2πfmill)
2 (3.13)

amax = |ẍmax| (3.14)

Those parameters are important to relate the theo-
retical model to the experimental parameters.

Fimpact = mamax (3.15)

the xmax parameter is the oscilation amplitude. As-
suming a radial oscilation mixer, this parameter is
given as

xmax =
L

2
(3.16)

the mass of the ball can be calculated uising the ball
density

m = ρ
4

3
πr3 (3.17)

Fimpact =
2

3
ρπr3L · (2πfmill)

2 (3.18)

this way,

σ =

(
6

π3

E∗2

r2

2

3
ρπr3L · (2πfmill)

2

)1/3

(3.19)

Therefore, it is possible to get

σ =
(

16E∗2rρLf2
mill

)1/3

(3.20)

One of the most easily changeable parameters in
mechanochemestry is the mill frequency. Therefore,
it is usefull to de�ne σ in terms of it and take the
other paremeters as constants

σ = Cmill
ball f

2/3 (3.21)

this stabilishes an important relationship.

3.3.2 The reduced Young's Modulus
(E∗)

The reduced Young's modulus, E∗, accounts for
the elastic properties (Young's modulus Ei and Pois-
son's ratio µi) of both colliding bodies. Those are
sti�ness and elastic properties that can be obtained
from computational methods using the elastic ten-
sor.

1

E∗
=

1− µ2
1

E1
+

1− µ2
2

E2
(3.22)

In our system, two types of collisions are most im-
portant:

1. Ball-crystal collisions (ball vs. coformer A or
B).

2. Crystal-crystal collisions (coformer A vs. co-
former B).

A rough estimative, that is proposed here, is to com-
pute those modules pair-wise between coformer A
and the ball (E∗A), co�ormer B (E∗B)and the ball.
After this, the reduced modules is recalculated us-
ing the already reduced one:

1

E~
i

=
1− µ2

i

E∗
+

1− µj 6=i
Ej

(3.23)

and them use a weighted avarege for the reduced
Young's Modulus

E∗e�ective = ηA · E~
A + ηB · E~

B (3.24)

Being ηi molar propotions.

3.3.3 Modeling reaction kinetics

Using 3.3 it is possible to get the reaction rate
k:

k = A exp

(
−Eact

kBT
+
Cmill
ball∆V

‡f
2/3
mill

kBT

)
(3.25)
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this is very interesting because it gives a lower limit
for reaction. Let's suppose the activation energy is
0, then the rate only depends on interactions and
the system is very close to an spontaneous reaction.

In a spontaneous system, k = A. Therefore, it
is clear that interesting experimental details can be
optimized in this system

Eact = Cmill
ball∆V

‡f
2/3
mill (3.26)

fmill, min =

(
Eact

Cmill
ball∆V

‡

)3/2

(3.27)

This is the most important and easily testable hy-
pothesis of this work. The minimum frequency for
activation, should be proportional to the activation

energy to the power of 3
2

(
fmill, min ∝ E3/2

act

)
. This

relationship can also be visualized on �g 3.4

Figure 3.4: Activation energy vs minimum milling
frequency with arbitrary units for Cmill

ball ,

3.3.4 Discussion

The main problem with this work is that the ac-
tivation energy is considered as constant. It isn't.
In mechanochemical processes, crystals are dam-
aged, creating defects that act as preferential reac-
tion points. Senna, M. et. all [7] mention this prob-
lem. This method could still be used for faster reac-
tions, as there would be no time for crystal degra-
dation to be a signi�cant factor.

Another error in approximation is that, Senna,
M. also argues that maybe the ∆G of the crystal
shouldn't be the one at rest, but the one when the
crystal is deformed by contact. This is a valid point,

but this model should �rst be proven to work be-
fore being improved further. With no experimental
evidence, it is pointless to pick at details.

It would be probably more productive to model
an empirical law of how crystals usually decay, but
that would only be valid for speci�c types of crys-
tals. Harder crystals would probably be more brit-
tle, generating smaller pieces and pieces that don't
break cleanly in the habit surface. That would prob-
ably result in a smaller activation energy.

The model could maybe be improved by adding
an energy decay parameter that decays linearly with
time, but it also would need to depend on the rela-
tive concentration of product and reagents.

3.4 Conclusion

This work opens a path to optimize experimen-
tal parameters to obtain co-crystals in a better and
faster way. Its formalism is generic enough that this
should work for normal (covalent or ionic) mechanochem-
ical reactions given that the elastic tensors can be
calculated. It also provides the proportionality rela-
tionship from milling frequency to activation energy(
fmill, min ∝ E3/2

act

)
.

This is also useful if there is a need to pro-
duce a compound that isn't the most stable possible,
but has better properties, by limiting the frequency

between E1
act

3/2
< C∗fmill, min < E2

act

3/2
(C∗ be-

ing de�ned as (Cmill
ball∆V

‡)−1), as it is noted that if
something doesn't exist naturally but is more sta-
ble, it usually has a higher activation energy.

This work is still missing the most important
step, experimental validation. As custom built equip-
ment is necessary, there was no time to do it until
the due date. But it is a good framework for build-
ing future improvements on.
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Abstract: The fundamental ideas behind quantum
mechanics have been extensively studied since the
beginning of the 20th century. These foundations
explore how we can understand the remarkable and
often non-intuitive nature of the microscopic world.
The states provided by Bose-Einstein condensates
approach this previously mentioned idea. Under
such circumstances, these states allow us to observe
quantum e�ects on scales that we were not previ-
ously able to recognize in macroscopic systems. In
this article, we will address this perspective, start-
ing with the statistical description, theoretical back-
ground, and experimental applications.

4.1 Introduction

More than one century ago, an idea was pro-
posed by Bose to describe how � light quanta� (pho-
tons) can be divided into "cells" whose volume has
units of h3 [1], and through which thermodynamic
properties of radiation could recovered macroscop-
ically. A link between thermodynamics and quan-
tum mechanics was created by this discovery, with-
out any previously classical theory being used. In
his paper, it was analyzed how the energy distribu-
tion in black bodies, as proposed by Planck and sug-
gested by Einstein, can be related to the exchange
of energy between particles and molecules, based on
elementary principles following Planck's formalism
[2].

Uncountable reasons can be traced to Einstein's
contributions to quantum mechanics, but also his
e�orts to quantum statistics must certainly be men-
tioned. In three papers published between 1924 and
1925 [3, 4, 5], ideas were presented that, when con-
nected to the aforementioned description by Bose,
led to the establishment of what is now called the
Bose-Einstein distributions and are directly related
to Bose-Einstein condensate (BEC). In his paper it

brought the quantization of ideal gas, which means,
the quantization of free massive particles that is
clearly a manifestation of quantum statistics.

Bose-Einstein condensation (BEC) was experi-
mentally achieved in the mid-1990s in dilute atomic
gases of rubidium [6], sodium [7], and lithium [8],
providing a unique opportunity to study a quan-
tum state on a macroscopic scale. This new state
of matter, known as a super�uid, o�ered a di�erent
perspective on the microscopic world and revealed
distinct experimental features. The high densities
of these systems allow for a description in terms of
a single wavefunction, with all atoms in the sample
occupying the same quantum state. In the follow-
ing sections, we present a brief theoretical introduc-
tion to BEC, along with the fundamental techniques
used to reach the ultracold temperatures necessary
for its realization.

4.2 Bose-Einstein distribution for

microcanonical states

4.2.1 Indistinguishable particles

The microscopic quantum world requires a de-
scription based on the states energy, volume, and
number of particles, but the description presented
so far only accounts for the multiple combinations of
microstates that may constitute the same macrostate.
It is necessary to deal with what is referred to as in-
distinguishable particles, in particular, bosons. Here,
we will consider only the case of bosons; the fermion
case can be found in [12, 14]. The description can
be done in di�erent ways in which the particles N
can be organized into m �cells� with nj elements.
However, now the particles cannot be distinguished
by their permutations, and consequently, the anal-
ysis must be modi�ed. This problem emerges when
the phase space is quantized, assuming that the size
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of each cell cannot be small enough to group just a
particle - following this idea does not make sense in
quantum statistics. With the purpose of account-
ing indistinguishable particles, it is necessary to re-
write the partition function to include all cases that
may arise, i.e., allowing a general way to reorga-
nize the particles nj within the same box j, with
gj sub-cells, all having the same energy εj , provid-
ing di�erent possible ways to �ll the j-th cell . The
key to understanding this process is the concept of
degeneracy. [14].

nj =
gj

eβ(εj−µ) − 1
, (4.1)

where β = 1
kBT

, ε is energy and µ is the chemical
potential. In Fig. 4.1 is showed the Bose-Einstein
distribution for di�erents fugacities, de�ned as Z =
eβµ.

4.3 Density of states

When evaluating the thermodynamic properties
of gases, it is common to replace sums over states by
integrals, using the concept of density of states, in
which the energy level structure is treated as con-
tinuous. In general, however, for the purposes of
this paper, such an approach fails due to the signif-
icant contribution of the low-energy states, which
are not adequately captured in this approximation,
although it provides a good description of the con-
tributions from excited states [10]. Since studies
are generally based on gases con�ned in trapping
potentials, it is of great interest to investigate the
in�uence of the environment on these atoms. As
the atoms are trapped in various types of poten-
tials (U(r)), non-homogeneous behaviors can be ob-
served as a consequence, meaning that the distribu-
tion of available particles varies in space. In the
general case, the Hamiltonian in three dimensions
can be written as:

Ĥ =
−~2

2m
∇2 + U(r) (4.2)

As a consequence of trapping potential, the wave
function is localized and all states have discrete en-
ergy levels, with the atomic population determined
by these levels. As mentioned earlier, some lev-
els are degenerate, and the way the atomic cloud
is organized is governed by the trapping potential

Figure 4.1: Bose-Einstein distribution for di�erent
values of fugacity Z in terms of ε/kBT .

through the density of states η(ε). For an arbitrary
potential, the density of states is given by:

∫
η(ε)dε =

(2m)3/2

(2π)2~3

∫
d3r

∫
dε
√
ε− U(r), (4.3)

but frequently is seen the harmonic case, written as:

η(ε) =
ε2

2(~ω̄)3
. (4.4)

where, ε is energy and ω̄ is mean frequency.

4.4 Bose-Einstein condensate

4.4.1 Condensation of a harmonically
con�ned ideal gas

The Bose-Einstein condensate in a non-interacting
gas of bosons is treated in several books on quan-
tum statistics and represents the most well-known
case in which quantum e�ects can be observed on a
macroscopic scale. The theory presented can also be
applied to quantum phenomena involving atomic in-
teractions, such as helium super�uidity. Below will
be discussed the conditions under which the Bose-
Einstein condensate occurs.

When the kinetic energy of a bosonic gas de-
creases, is directly related to a reduction in its tem-
perature. Under such a regime, it is expected that
the atoms occupy the lowest energy level, i.e., εj=0 =
0, of the trapping potential. In the grand canonical
ensemble the number of particles can be written as:

nj = −∂Ω

∂µ
= wT,µ(εj), (4.5)

where Ω is the Landau potential, and wT,µ is the
statistical distribution function. At low tempera-
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tures, with the system maintained in the ground
state, this equation becomes [12]:

n0
ε0→0→ wT,µ(0) =

1

1/Z − 1
= N, (4.6)

where Z is the fugacity. The equation above matches
(4.1), except for the degeneracy factor gj , which is
expressed in terms of the density of states.

In the thermodynamic limit, i.e., as N →∞, the
system is observed from a macroscopic perspective,
and the fugacity approaches its maximum value,
Z → 1. It expresses a macroscopic condition for
the ground state population and allows us to calcu-
late the population that composes this state. For a
speci�c gas with a large number of particles, whose

energy spectrum is given by ε = p2

2m , the density of
states is given by [12]:

η(ε) =
(2m)3/2

(2π)2~3
V
√
ε, (4.7)

and using (4.5), Boltzmann distribution appears in
the thermodynamic limit presenting the total num-
ber of atoms in ground state:

N =

∫ ∞
0

η(ε)wT,µ(ε)dε =
V

λ3
th

g3/2(Z), (4.8)

where g is Bose function1 and λth is the thermal de
Broglie wavelength [12].

The values of Bose distribution are limited by
phase space g3/2(0) → g3/2(1). When T → 0,
de Broglie wavelength diverges, but g3/2 is limited.
As consequence to Bose distribution, the fugacity,

when Z
T→0→ 1, result in the number of atoms going

to zero at lowest energy state. The previously cited
consequence caused by replacing sums integrals and
the chemical potential is limited by the minimal en-
ergy level [10]. In this levels the density of states
disappears and is necessary to establish a discrete
term to join again the lowest level as solved by Ein-
stein. Thus the population is given by:

N = Nc +
V

λ3
th

g3/2(Z), (4.9)

if the number of particles in excited states is less
than N , the remaining particles must be arranged
in the single ground state, whose occupation num-
ber can become possibly large. Thus, the system
exhibits a Bose-Einstein condensate.

1The Bose function here is describe in therms of integral
representation and can be �nd at [10, 12, 14]

In this context is necessary to do a separation
between the ground state and remnants levels (ex-
cited) analyzing the temperatures that di�ers these
two situations - as know as critical temperature Tc.
This temperature plays a signi�cant role in the sys-
tem, as it represents the minimum value below which
atoms begin to condense. When the system temper-
ature T > Tc, all atoms are well distributed among
the available states; each state has its own popula-
tion, meaning the distribution is uniform and the
states are sparsely populated, i.e. Nc = 0.

When the system temperature T ≤ Tc, the ex-
cited states can no longer accommodate all the par-
ticles. As a result, the surplus particles begin to
accumulate in the ground state, leading to a macro-
scopic occupation when µ→ 0. This marks the on-
set of the Bose-Einstein condensate, where a �nite
fraction of the total particles resides in the lowest
energy level. With µ = 0 and the temperature �xed
at Tc, the number of particles in excited states be-
comes steady and temperature-independent. Thus,
N is given by:

N =
V

λ3
c

g3/2(1), (4.10)

where λc is de�ned at Tc. Then Tc is obtained:

Tc =
2π~2

kBm

(
N

V g3/2(1)

)2/3

. (4.11)

Normalizing by the total number of particles and
using the relation above, it is possible to write2:

Nc
N

= 1−

(
min(T, T

(3/2)
c )

T
(3/2)
c

)3/2

(4.12)

4.4.2 Density and momentum distri-
bution for a Bose gas

One of the characteristics of cold/ultra-cold atoms
systems is the number of con�ned particles, when
the temperature is around the microkelvin scale.
Under this regime, the atomic cloud often contains
between 104 and 107 atoms. This number quickly
decreases by fractions due to the di�erent techniques
used for trapping and cooling the system, and it is
possible to relate this behavior to two fundamental
reasons. First, the system is metastable, so inter-
action with other species is not possible in equilib-
rium. Second, the system's lifetime is on the order
of seconds, or at most, minutes [10].

2It is important to explain that the particle distribution
depends on the type of potential. Here, for a box potential.
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These quantities can be related by measuring
the density pro�le. In principle, two di�erent types
of imaging are used to obtain this distribution: ab-
sorption imaging and phase-contrast imaging. The
�rst one is not useful for a Bose-Einstein conden-
sate due to the high optical density close to Tc [17];
however, phase-contrast imaging is a good option
because is almost non-destructive and is possible to
evaluate the same cloud of these systems.

In inhomogeneous potentials, the normal frac-
tion and the condensate occupy di�erent energy lev-
els and form spatially separated clouds, with the
condensate being concentrated around the center of
the potential in a dense form. If the atomic cloud
is allowed to expand, its distribution depends not
only on the initial density distribution, but also on
the velocity distribution, given by [12]:

n(x) =
1

λ3
th

g3/2

(
e−β[U(x)−µ]

)
n(k) =

a6
ho

λ3
th

g3/2

(
e
β
(
µ− p2

2m

))
,

(4.13)

where aho is the spatial extend of ground state of
the harmonic oscillator, given by aho =

√
~/mω.

4.4.3 Real BEC

The Bose-Einstein condensate occurs when some
atoms share the same lowest energy quantum state.
Below the critical temperature, a separation can be
observed between two di�erent spatial distributions
(condensate and normal), as well as in the momen-
tum distributions. It is important to cite that this
description applies to an ideal gas, where particles
do not interact, however in inhomogeneous gases,
it is necessary to evaluate the collisions among the
atoms that compose the cloud and reformulate for-
malism to describe these collisions in order to un-
derstand their thermodynamic behavior. In order
to obtain low temperatures and high densities for a
gas of atoms characterizing a BEC, a phase transi-
tion must occur when the spatial density described
by (4.13) satis�es the condition nλ3

th ≥ 2.612. Due
the cooling process is possible to achieve µK temper-
atures with small loss of atoms, so that the phase
space density can be increased. However, this in-
crease by a laser cooling of alkali atoms had reached
its limit by Doppler limit and BEC was not formed
yet. If the density increases, light scattered by one
atom is absorbed by others, causing a heat and re-
pulsion between them.

A promising way to achieve BEC is via evapo-
rative cooling3. This technique consists of the pref-

3See details in Laser Cooling and Trapping [16]

erential removal of atoms from a con�ned sample
that have higher-than-average energy, followed by
the rethermalization of the remaining gas through
elastic collisions [16]. This procedure is based on
scattering theory, and the solution for such systems
is obtained using partial-wave analysis. At large
interparticle distances, where the potential energy
V (R) becomes negligible compared to the total en-
ergy E, the wavefunctions reduce to simple oscil-
latory forms. In this regime, the solutions of the
Schrödinger equation in the absence of the potential
term V (R) can be used, di�ering only by a phase
shift δl between them [16]. Both the di�erential
and total cross-sections can be expressed in terms
of these phase shifts, and the total cross-section is
given by:

σ =
4π

k2

∞∑
l

(2l + 1) sin2 δl, (4.14)

where k =
√

2ME/~ is the wavevector, l is partial
waves given by coe�cients of Legendre polynomials
and δl is phase shift.

As the most energy particle was evaporated to
the trap, those that remain have much lower average
energy, occupying a small volume around the center
of trap, thereby increasing the density.

Elastic collisions drive the thermalization pro-
cess of the gas after the trap depth has been lowered,
and this e�ect can be enhanced by using a large
cross-section. On the other hand, inelastic collisions
produce a acceleration in the particles, which can
then reach high energies to remain trapped. These
collisions can be described by one parameter, named
scattering length a. At ground state only the phase
shift δl for l = 0 is important. Thus, the description
can be understood as: the wavefunction in the inner
range of the potential is no longer dependent on the
energy of collision, since the potential is much larger
than the collision energy. Under these condictions
is possible to de�ne the scattering lenght as [16]:

a = − lim
k→0

δ0
k
. (4.15)

For the BECs, a plays a primordial role.
As previously described, particles do interact,

and a widely used and elegant way to handle this is
by using the lowest-order approximation, in which
the interaction takes the form of a mean-�eld repul-
sive force. In this case, the Hamiltonian assumes a
non-linear term due to the interaction, which is re-
sponsible for the collisions/interactions and is pro-
portional to the local density of atoms, denoted by
Vint. Since the local density is itself |ψ|2, this makes
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Figure 4.2: Spatial distributions found and taken
from Cornel and Wienan after release from trap [6].

the Schrödinger equation for atomic motion result
in the Gross-Pitaevskii equation[16], being for N
atoms:

[
− ~2

2m
∇2 + Vt(R) + NVint|Ψ(R)|2

]
Ψ(R) = ENΨ(R)

(4.16)

where R is the coordinate of an atom in the trap,
Vt is the trapping potential that con�nes the atoms,
and Vint = 4π~2a/M is the coe�cient related to the
mean-�eld interaction between the atoms. We can
analyze the role described by the scattering length
in the following way: if a > 0, the interaction is re-
pulsive, so the BEC tends to disperse. It is related
by the harmonic potential that traps the atoms in
the ground state, resulting in a wavefunction that is
somewhat more spread out and �atter than a Gaus-
sian. On the other hand, for a < 0, the interaction
is attractive and the BEC eventually forms a wave-
function that maintains a Gaussian shape, as ex-
pected by the harmonic potential [16].

The solution of (4.16) describes that all con-
densate atoms share the same wavefunction, and
increasing the number of atoms in the condensate
does not increase its volume. This equation and its
posteriori consequences predicting condensation are
indeed profound outcomes. If atoms in a trap or a
bound container satis�es the above equation, then a
fraction of these atoms will be in the lowest energy
level, whose wavecfunction spans a amount of the
accessible volume.

]

4.5 Road away for Bose-Einstein

condensate

The �rst attempt to recognize and realize Bose-
Einstein condensation (BEC) is associated with phase
transitions in 4He observed in the late 1930s. 4He
satis�es equation (4.16) at high temperatures (around
2.2 K), and its properties change drastically at this
point, exhibiting super�uid behavior. However, be-
cause helium becomes a strongly interacting liquid
with zero viscosity, only a small fraction (about
10%) of the atoms actually enter the condensate.
This limitation is related to the tendency of two hy-
drogen atoms to recombine into an H2 molecule,
which was initially thought to prevent BEC due
to the rarity of the required three-body collisions.
Nonetheless, with the development of evaporative
cooling techniques, a BEC in atomic hydrogen was
�nally achieved in 1998 by Fried et al. [18].

The �rst experimental realization of BEC in an
alkali vapor was achieved in 1995 by Cornell and
Wieman et al.[6], who used a combination of laser
cooling and magnetic trapping techniques on a cloud
of 87Rb atoms. Approximately four months later,
an independent team led by Ketterle et al.[7] pro-
duced a BEC in 23Na. A key di�erence between
these two experiments was the number of atoms:
Ketterle's team achieved a condensate containing
about a hundred times more atoms, which enabled
the observation of distinct quantum e�ects such as
matter-wave interference [9], as showed in Fig.4.3.
For their groundbreaking contributions, Cornell, Wie-
man, and Ketterle were awarded the Nobel Prize in
Physics in 2001.

Achieving BEC required multiple cooling stages.
Initial cooling methods, such as optical molasses or
a magneto-optical trap (MOT), typically resulted
in atom densities of approximately 1010 atoms/cm3.
However, BEC requires densities between 1011 and
1015 atoms/cm3, making evaporative cooling a cru-
cial step in reaching the required phase-space den-
sity. The standard method to detect a Bose-Einstein
condensate (BEC) involves a carefully designed ap-
paratus that allows for measuring the spatial dis-
tribution of atoms after a short delay time follow-
ing their release from the trapping potential. One
common approach is to perform ballistic expansion
measurements�that is, to analyze the atomic dis-
tribution after a time-of-�ight. This distribution is
then used to infer the velocity distribution of the
atoms in the original sample based on the observed
spatial pro�le. The Fig. 4.2 shows he spatial dis-
tributions of atoms after release from trap, using
ballistic parameters is possible to obtain the size of
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the cloud, shape and velocity distribution.

Figure 4.3: Mater-waves interference in BEC pro-
duced by Andrews, et al. [9].

4.6 Conclusion

The purpose of this paper was to explore and un-
derstand various concepts and techniques related to
the realization of Bose-Einstein condensates (BEC),
including the experimental methods and the statis-
tical and quantum foundations that de�ne a BEC.
The theoretical background acquired throughout this
work enabled a deeper understanding of the role of
the ideal gas model and how real systems deviate
from this idealization. I would like to thank Dalila
Riviero for her valuable insights and discussions on
the conditions for BEC and related topics.
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The free electron gas model
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Abstract: The free electron gas model represents
a foundational, albeit simpli�ed, approach in con-
densed matter physics for understanding the elec-
tronic properties of metals. This paper provides a
comprehensive review of the model, from its quan-
tum mechanical formulation to its key successes and
ultimate limitations. Beginning with the particle-
in-a-box problem, we derive fundamental concepts
for the three-dimensional electron gas, including the
Fermi energy, the density of states, and the Fermi-
Dirac distribution. We then demonstrate the model's
predictive power by showing how it successfully ac-
counts for the linear temperature dependence of the
electronic heat capacity and provides a theoretical
basis for the empirical Wiedemann-Franz law. Sub-
sequently, we analyze the model's signi�cant fail-
ures. These include its inability to distinguish be-
tween metals, semiconductors, and insulators; its
failure to explain positive Hall coe�cients observed
in some metals; and the paradox of unrealistically
long electron mean free paths. In conclusion, while
the free electron model provides crucial insights, its
shortcomings underscore the essential role of the
crystal's periodic potential, motivating the transi-
tion to the more complete framework of band the-
ory.

5.1 Introduction

The quest to understand the behavior of elec-
trons in solids is a cornerstone of modern condensed
matter physics. It is the key to understanding a
vast array of material properties, from electrical and
thermal conductivity to magnetism and optical char-
acteristics. One of the earliest and most successful
attempts to model this complex many-body prob-
lem is the free electron gas model.

Proposed initially by Drude and later re�ned by
Sommerfeld, who incorporated quantum mechanics,

this model provides a powerful, albeit simpli�ed,
picture of metallic solids. It treats the valence elec-
trons as a gas of non-interacting fermions, free to
move within the con�nes of the crystal lattice. The
lattice's complex potential is radically simpli�ed to
a uniform potential box. This approximation, de-
spite its simplicity, allows for the derivation of sev-
eral fundamental properties of metals with surpris-
ing accuracy.

This paper will explore the theoretical frame-
work of the free electron gas model. We will begin
by solving the Schrödinger equation for electrons in
a one-dimensional potential well and extend this to
the three-dimensional case using periodic boundary
conditions. This will allow us to derive fundamental
quantities like the Fermi energy and the density
of states. We will then introduce the Fermi-Dirac
distribution to account for thermal e�ects. We
will examine the model's successes, such as its ex-
planation of Ohm's law and the Wiedemann-Franz
law, and delve into its notable limitations, includ-
ing its inability to explain the electronic heat ca-
pacity at low temperatures or the existence of in-
sulators and semiconductors. By analyzing both its
triumphs and shortcomings, we aim to provide a
comprehensive understanding of this foundational
model and its crucial role in paving the way for more
sophisticated theories, such as band theory.

5.2 The 1D quantum well: A

starting point

In quantum mechanics, the "particle in a box" is
a foundational problem. We begin with this simple
case to build our intuition. Consider a single elec-
tron of mass m con�ned to a one-dimensional box
of length L. We model this with a potential V (x)
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that is zero inside the box and in�nite outside:

V (x) =

{
0 0 < x < L

∞ otherwise

Inside the box, the Hamiltonian Ĥ contains only the
kinetic energy term. The time-independent Schrödinger
equation is:

Ĥψn(x) = − ~2

2m

d2ψn(x)

dx2
= Enψn(x) (5.1)

The boundary conditions, ψn(0) = ψn(L) = 0, dic-
tate that the solutions must be standing waves. The
normalized wavefunctions are:

ψn(x) =

√
2

L
sin
(nπx
L

)
(5.2)

where n = 1, 2, 3, . . . is a positive integer quantum
number. Substituting this solution back into the
Schrödinger equation yields the quantized energy
levels:

En =
~2k2

n

2m
=

~2π2

2mL2
n2 (5.3)

Now, let's place N non-interacting electrons into
this 1D box. Since electrons are fermions, they must
obey the Pauli Exclusion Principle: no two elec-
trons can occupy the same quantum state. A state
is de�ned by the quantum number n and the spin
projection (ms = ±1/2). Therefore, each energy
level En can hold a maximum of two electrons, one
with spin up and one with spin down.

At absolute zero (T = 0), the electrons �ll the
lowest available energy levels. If we have N elec-
trons, they will �ll the �rst N/2 orbital states (as-
suming N is even). The quantum number of the
highest occupied level is thus nF = N/2. The en-
ergy of this topmost level is, by de�nition, the Fermi
Energy (EF ).

EF =
~2π2

2mL2

(
N

2

)2

=
~2π2N2

8mL2
(5.4)

This simple 1D result already shows that due to
the Pauli principle, the energy of the most ener-
getic electron can be very large, a key insight that
classical physics misses.

Figure 5.1: Quantized energy levels of an electron
con�ned in a one-dimensional box. Each level can
be occupied by two electrons with opposite spins.
[1]

5.3 The 3D free electron gas

To model a real solid, we extend our analysis to
three dimensions. While we could use in�nite po-
tential walls as in the 1D case, it is mathematically
more convenient to use periodic (Born-von Kar-
man) boundary conditions. This assumes our
cube of side L is part of an in�nite, repeating lat-
tice, which e�ectively removes surface e�ects. This
approach is justi�ed because for a macroscopic crys-
tal, the number of atoms on the surface is negligible
compared to the number in the bulk.

Periodic boundary conditions favor traveling plane
wave solutions for the wavefunction:

ψ~k(~r) =
1√
V
ei
~k·~r (5.5)

where V = L3 is the volume of the box and ~k is
the wave vector. The boundary condition ψ(x +
L, y, z) = ψ(x, y, z) (and similarly for y and z) re-

stricts the allowed values of ~k:

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

(5.6)

where nx, ny, nz are any integers (positive, negative,

or zero). These allowed ~k vectors form a discrete
grid in a reciprocal space known as k-space. Each
point on this grid represents a distinct orbital state.

The energy of an electron in a state ~k is found by
substituting the plane wave into the 3D Schrödinger
equation:

E~k =
~2k2

2m
=

~2

2m
(k2
x + k2

y + k2
z) (5.7)
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5.3.1 The Fermi sphere and Fermi en-
ergy

At T = 0, the N electrons �ll the lowest energy
states, which correspond to the k-space points clos-
est to the origin (~k = 0). The �lled states form a
sphere in k-space, known as the Fermi sphere. Its
radius is the Fermi wave vector (kF ), and its sur-

face is the Fermi surface. All states with |~k| < kF
are occupied, and all states with |~k| > kF are empty.

To �nd kF , we count the total number of states
within this sphere. The volume of a single state in

k-space is
(

2π
L

)3
. The total number of orbital states

inside the Fermi sphere is its k-space volume divided
by the volume per state:

Nstates =
Volume of Fermi Sphere

Volume per State
=

4
3πk

3
F

(2π/L)3
=

V

6π2
k3
F

(5.8)
Since each state can hold two electrons (spin up and
spin down), the total number of electrons N is:

N = 2×Nstates =
V

3π2
k3
F (5.9)

We can now express the Fermi wave vector kF in
terms of the electron density n = N/V :

kF = (3π2n)1/3 (5.10)

The Fermi energy (EF ) is the energy correspond-
ing to kF :

EF =
~2k2

F

2m
=

~2

2m
(3π2n)2/3 (5.11)

This is one of the most important results of the free
electron model. It shows that the maximum kinetic
energy of an electron in a metal depends only on the
electron density. For typical metals like copper, EF
is on the order of 7 eV, an enormous energy corre-
sponding to a temperature of about 80,000 K. This
explains why electrons contribute very little to the
heat capacity of a metal at room temperature�only
those very near the Fermi surface can be thermally
excited.

Figure 5.2: A conceptual illustration of k-space at
T=0. The discrete points represent allowed electron
states. The electrons �ll all states within the Fermi
sphere (radius kF ), which has an associated energy
EF . The states outside the sphere are empty. [1]

5.4 Density of states and the

Fermi-Dirac distribution

To understand the thermal properties of the elec-
tron gas, we need two key concepts: the density of
states, which tells us how many states are available
at a given energy, and the Fermi-Dirac distribu-
tion, which tells us the probability of those states
being occupied.

5.4.1 Density of states (DOS)

The density of states, g(E), is de�ned as the
number of available electronic states per unit vol-
ume, per unit energy range. We can derive it by
starting with our expression for the total number of
states N with energy up to E. First, we express the
number of states with wave vector less than k and
then convert from k to E.

The total number of states (including spin) with
energy less than or equal to E is:

N(E) =
V

3π2
k3 (5.12)

Using the energy relation E = ~2k2/(2m), we can
write k =

√
2mE/~. Substituting this gives:

N(E) =
V

3π2

(
2mE

~2

)3/2

=
V

3π2

(2m)3/2

~3
E3/2

(5.13)
The density of states per unit volume is then the
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derivative of N(E)/V with respect to energy:

g(E) =
1

V

dN(E)

dE
=

d

dE

[
1

3π2

(2m)3/2

~3
E3/2

]
(5.14)

g(E) =
1

2π2

(
2m

~2

)3/2√
E (5.15)

This important result shows that for a 3D free elec-
tron gas, the number of available states grows with
the square root of energy.

5.4.2 The Fermi-Dirac distribution

At any temperature T > 0, thermal energy can
excite electrons. The probability that a state with
energy E is occupied by an electron is given by the
Fermi-Dirac distribution function:

f(E) =
1

e(E−µ)/kBT + 1
(5.16)

where kB is the Boltzmann constant and µ is the
chemical potential. The chemical potential is the
energy required to add one more electron to the sys-
tem. At T = 0, the distribution is a step function:
f(E) = 1 for E < EF and f(E) = 0 for E > EF .
In this limit, the chemical potential is equal to the
Fermi energy, µ(T = 0) = EF .

For temperatures above absolute zero, the step
function is "smeared out" over an energy range of
a few kBT around the Fermi energy. This smearing
signi�es that some electrons with energies just be-
low EF are excited to states with energies just above
EF . Since EF � kBT for metals even at high tem-
peratures, only a small fraction of the electrons are
a�ected by temperature, which has profound con-
sequences for properties like heat capacity and con-
ductivity.

5.5 Consequences and applica-

tions of the model

Armed with the concepts of the Fermi energy
and Fermi-Dirac statistics, we can now evaluate the
model's ability to explain key physical properties of
metals.

5.5.1 Electrical conductivity and Ohm's
law

The model provides a microscopic basis for Ohm's
Law by considering electrons accelerating under an
electric �eld ~E while undergoing scattering events.

The equation of motion for an electron's drift veloc-
ity ~vd is given by the Drude model:

m
d~vd
dt

= −e ~E − m~vd
τ

(5.17)

where −e is the electron charge and τ is the re-

laxation time, the average time between scattering
events. In steady state (d~vd/dt = 0), the drift ve-
locity is constant:

~vd = −eτ
m
~E (5.18)

The electric current density~j is the product of charge
density (ne) and drift velocity.

~j = (−e)n~vd = (−e)n
(
−eτ
m
~E
)

=
ne2τ

m
~E (5.19)

This is precisely Ohm's Law, ~j = σ ~E, where the
electrical conductivity σ is:

σ =
ne2τ

m
(5.20)

The quantum contribution here is crucial: because
of the Pauli exclusion principle, only electrons near
the Fermi surface can scatter into empty states.
Therefore, the relevant speed for these electrons is
the Fermi velocity vF = ~kF /m, and the relaxation
time is determined by the mean free path λF of
these speci�c electrons, τ ≈ λF /vF .

5.5.2 Electronic heat capacity

One of the major failures of classical physics was
the "heat capacity puzzle." Classically, every free
electron should contribute 3

2kB to the heat capac-
ity, leading to a large value CV = 3

2NkB . Experi-
ments, however, showed that the electronic contri-
bution was much smaller and proportional to tem-
perature.

The Sommerfeld model resolves this brilliantly.
When a metal is heated from T = 0 to a temper-
ature T , only electrons within an energy range of
approximately kBT around the Fermi energy are ex-
cited into available states above EF . The vast ma-
jority of electrons deep within the Fermi sea cannot
be excited because the states just above them are
already occupied.

The number of "thermally active" electrons is
roughly Ne� ≈ g(EF ) ·kBT . Each of these electrons
gains an average energy of about kBT . Thus, the
increase in total internal energy ∆U is:

∆U ≈ Ne� · (kBT ) ≈ g(EF )(kBT )2 (5.21)
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The electronic heat capacity Cel = dU/dT is there-
fore proportional to the temperature. A more rig-
orous calculation using the Sommerfeld expansion
yields:

Cel =
π2

3
g(EF )k2

BT =
π2

2
NkB

(
T

TF

)
(5.22)

where TF = EF /kB is the Fermi temperature. This
linear dependence on T is a major triumph of the
model and agrees well with experimental measure-
ments at low temperatures, where it can be distin-
guished from the lattice heat capacity (∝ T 3).

5.5.3 Thermal conductivity and the
Wiedemann-Franz law

In metals, heat is primarily transported by the
same free electrons that conduct electricity. The
thermal conductivity κ can be estimated from ki-
netic theory as κ ≈ 1

3cvv
2τ , where cv is the heat

capacity per unit volume.
Applying quantum principles, we must use the

electronic heat capacity per unit volume cel = Cel/V
and the Fermi velocity vF :

κ =
1

3
celv

2
F τ =

1

3

(
π2

2
nkB

T

TF

)
v2
F τ (5.23)

The Wiedemann-Franz law is an empirical observa-
tion that the ratio of thermal to electrical conduc-
tivity for metals is directly proportional to temper-
ature. Let's test this with our model by computing
the ratio κ/σ, known as the Lorenz number L:

L =
κ

σT
=

1
3

(
π2

2 nk
2
B

1
EF

)
v2
F τ(

ne2τ
m

) (5.24)

Using EF = 1
2mv

2
F , the equation simpli�es dramat-

ically. The density n, relaxation time τ , and mass
m cancel out:

L =

π2

6
nk2B

1
2mv

2
F

v2
F τ

ne2τ
m

=
π2k2

Bmv
2
F τ

3mv2
Fne

2τ
=
π2k2

B

3e2
(5.25)

The model predicts that the Lorenz number L =
κ/(σT ) is a universal constant for all metals:

L =
π2

3

(
kB
e

)2

≈ 2.44× 10−8 WΩK−2 (5.26)

This remarkable result, which is in excellent agree-
ment with experimental values, is another major
success of the free electron model, beautifully link-
ing the thermal and electrical properties of metals
through fundamental constants.

5.6 Limitations and failures of

the free electron model

Despite its successes, the free electron model
is built on a foundation of radical simpli�cations.
As pointed out critically by Ashcroft and Mermin,
these simpli�cations lead to several profound fail-
ures and inconsistencies that highlight the model's
limitations. The primary error is ignoring the ef-
fects of the periodic potential created by the crystal
lattice.

5.6.1 The classi�cation of materials:
Metals vs. insulators

The most fundamental failure of the model is
its inability to explain the existence of insulators
and semiconductors. According to the free electron
model, any element with valence electrons should
be a metal, as these electrons would form a partially
�lled sea of energy states capable of conducting elec-
tricity.

The model cannot answer a simple question: Why
is Sodium (Na), with one valence electron, a good
metal, while Diamond (C), with four valence elec-
trons, is a superb insulator? It o�ers no mecha-
nism to explain the vast di�erences in conductivity
across materials. This failure stems directly from
ignoring the electron-ion interaction, which in real-
ity creates a structured landscape of allowed energy
bands and forbidden energy gaps. The existence of
an energy band gap is the de�ning characteristic of
semiconductors and insulators, a concept entirely
absent from the free electron picture.

5.6.2 Anomalies in transport proper-
ties: The Hall e�ect

The Hall e�ect provides a method for measuring
the sign and density of charge carriers. In the free
electron model, the Hall coe�cient RH has a simple
and unambiguous prediction:

RH = − 1

ne
(5.27)

Since the electron density n and the elementary
charge e are positive, the model predicts that the
Hall coe�cient must always be negative for all
metals, as the charge carriers are electrons.

However, experiments show that for several met-
als, such as Beryllium (Be), Zinc (Zn), and Alu-
minum (Al), the Hall coe�cient is positive. This
suggests that the charge carriers behave as if they
have a positive charge. The free electron model has
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no explanation for these "holes," which are a direct
consequence of the band structure in real solids.

5.6.3 The mean free path paradox

While the model provides the correct functional
form for conductivity, the values it requires are prob-
lematic. To match experimental conductivities, the
electron mean free path λ (the average distance an
electron travels between collisions) must be on the
order of tens to hundreds of angstroms. This is
di�cult to reconcile with the picture of a dense
solid, where the ions are only a few angstroms apart.
Classically, one would expect an electron to scatter
o� nearly every ion in its path, leading to a much
shorter mean free path. The model fails to explain
why electrons appear to ignore the vast majority of
the ions in the lattice.

This paradox is only resolved by band theory,
which shows that a quantum mechanical electron
wave (a Bloch wave) travels through a perfectly pe-

riodic potential without any scattering at all. Scat-
tering only occurs from deviations from perfect pe-
riodicity, such as lattice vibrations (phonons) and
impurities.

5.6.4 Cohesion and crystal structure

The free electron model treats the positive ions
as a uniform "jellium." It o�ers no mechanism to ex-
plain why the ions, which mutually repel each other,
form a stable, solid lattice. While the electron gas
provides some electrostatic "glue," the model is in-
su�cient for calculating cohesive energies accurately.

More importantly, it completely fails to explain
why di�erent metals adopt di�erent crystal struc-
tures (e.g., BCC, FCC, HCP). If the background
potential is uniform, there should be no energetic
preference for one structure over another. The spe-
ci�c arrangement of atoms in a crystal is a direct
result of the complex interplay between the elec-
tron wavefunctions and the discrete ion potentials,
a phenomenon the free electron model cannot cap-
ture.

In conclusion, the failures of the free electron
model are as instructive as its successes. They force
us to recognize that a complete theory of solids must
account for the periodic potential of the crystal lat-
tice. This leads directly to the development of band
theory, which successfully resolves these shortcom-
ings and provides a far more powerful and accurate
description of electrons in solids.
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